Integrating Neuroaesthetic Design into Brain-on-Chip Research: Toward Enhanced Neural Engagement and Cognitive Accessibility

Author's Information:

Piper Hutson

Lindenwood University, USA https://orcid.org/0000-0002-1787-6143  

James Hutson

Lindenwood University, USA https://orcid.org/0000-0002-0578-6052

Vol 02 No 08 (2025):Volume 02 Issue 08 August 2025

Page No.: 144-154

Abstract:

This study examines the potential for neuroaesthetic design and adaptive neurofeedback principles to enhance brain-on-chip (BoC) research, with an emphasis on optimizing neural engagement and cognitive accessibility for diverse populations. Existing BoC platforms have transformed neuroscience through high-fidelity modeling of neural circuits, yet cognitive accessibility and sensory inclusion remain comparatively underexplored. Drawing upon recent studies in neuroinclusion, multisensory interface design, and adaptive feedback, this work synthesizes findings from biophilic interface architecture, neurofeedback literature, and embodied cognition frameworks. The manuscript outlines a multidisciplinary research agenda that prioritizes sensory diversity and ethical considerations in the evolution of BoC systems. Instead of making unverifiable or overgeneralized claims, the discussion focuses on plausible experimental approaches and mechanisms—such as AI-driven neurofeedback, real-time biofeedback, and personalized sensory modulation—supported by peer-reviewed evidence. Emphasis is placed on translational strategies to accommodate neurodivergent user groups, mitigate algorithmic bias, and foster inclusive neural interface development. By reimagining BoC systems through the lens of neuroaesthetic engagement, this article calls for a paradigm shift in the design and application of neurotechnology, encouraging the integration of scientifically grounded, accessible, and ethically responsible methodologies.

KeyWords:

Brain-on-chip, neuroaesthetic design, neurofeedback, cognitive accessibility, sensory inclusion, neural engagement, biophilic interface, neurodiversity, ethical neurotechnology

References:

  1. Alexander, L. M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., & Milham, M. P. (2017). An open resource for transdiagnostic research in pediatric mental health and learning disorders. Scientific data, 4(1), 1-26. 
  2. Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M. É., & Evans, A. C. (2013). BigBrain: an ultrahigh-resolution 3D human brain model. science, 340(6139), 1472-1475. 
  3. Arns, M., Heinrich, H., & Strehl, U. (2014). Evaluation of neurofeedback in ADHD: The long and winding road. Biological Psychology, 95, 108–115. https://doi.org/10.1016/j.biopsycho.2013.11.013
  4. Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature neuroscience, 20(3), 353-364. 
  5. Berlyne, D. E. (1973). Aesthetics and psychobiology. Journal of Aesthetics and Art Criticism, 31(4). 
  6. Coben, R., Linden, M., & Myers, T. E. (2010). Neurofeedback for autistic spectrum disorder: a review of the literature. Applied psychophysiology and biofeedback, 35(1), 83-105. 
  7. Eggermont, J. J. (2024). Neuroplasticity of the Auditory System. In Textbook of Tinnitus (pp. 149-163). Cham: Springer International Publishing. 
  8. Enriquez-Geppert, S., Huster, R. J., & Herrmann, C. S. (2017). EEG-neurofeedback as a tool to modulate cognition and behavior: A review tutorial. Frontiers in Human Neuroscience, 11, 51. https://doi.org/10.3389/fnhum.2017.00051
  9. Enriquez-Geppert, S., Smit, D., Pimenta, M. G., & Arns, M. (2019). Neurofeedback as a treatment intervention in ADHD: current evidence and practice. Current psychiatry reports, 21, 1-7. 
  10. Fairclough, S. H., Gilleade, K., Ewing, K. C., & Roberts, J. (2013). Capturing user engagement via psychophysiology: measures and mechanisms for biocybernetic adaptation. International Journal of Autonomous and Adaptive Communications Systems, 6(1), 63-79. 
  11. Gallese, V., & Sinigaglia, C. (2011). What is so special about embodied simulation? Trends in Cognitive Sciences, 15(11), 512–519. https://doi.org/10.1016/j.tics.2011.09.003
  12. Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neuroscience & Biobehavioral Reviews, 44, 124-141. 
  13. Herz, R. S. (2016). The role of odor-evoked memory in psychological and physiological health. Brain sciences, 6(3), 22. 
  14. Ienca, M., & Andorno, R. (2017). Towards new human rights in the age of neuroscience and neurotechnology. Life Sciences, Society and Policy, 13(1), 5. https://doi.org/10.1186/s40504-017-0050-1
  15. Kirk, U., Skov, M., Hulme, O., Christensen, M. S., & Zeki, S. (2009). Modulation of aesthetic value by semantic context: An fMRI study. Neuroimage, 44(3), 1125-1132. 
  16. Loewa, A., Feng, J. J., & Hedtrich, S. (2023). Human disease models in drug development. Nature reviews bioengineering, 1(8), 545-559. 
  17. Muriel, L. (2022). Memory Modification and Authenticity: A Narrative Approach. Neuroethics, 15(1). 
  18. Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., & Zeng, H. (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207-214. 
  19. Padmanabhan, R., Hildreth, A. J., & Laws, D. (2005). A prospective, randomised, controlled study examining binaural beat audio and pre‐operative anxiety in patients undergoing general anaesthesia for day case surgery. Anaesthesia, 60(9), 874-877. 
  20. Park, T. E., Mustafaoglu, N., Herland, A., Hasselkus, R., Mannix, R., FitzGerald, E. A., ... & Ingber, D. E. (2019). Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies. Nature communications, 10(1), 2621. 
  21. Pasquale, F. (2020). New laws of robotics. Harvard University Press. 
  22. Reuderink, B., Mühl, C., & Poel, M. (2013). Valence, arousal and dominance in the EEG during game play. International journal of autonomous and adaptive communications systems, 6(1), 45-62. 
  23. Robertson, C. E., & Baron-Cohen, S. (2017). Sensory perception in autism. Nature Reviews Neuroscience, 18, 671–684. https://doi.org/10.1038/nrn.2017.112
  24. Rommelfanger, K. S., Jeong, S. J., Ema, A., Fukushi, T., Kasai, K., Ramos, K. M., & Singh, I. (2018). Neuroethics questions to guide ethical research in the international brain initiatives. Neuron, 100(1), 19-36. 
  25. Ros, T., Munneke, M. A. M., Ruge, D., Gruzelier, J. H., & Rothwell, J. C. (2010). Endogenous control of waking brain rhythms induces neuroplasticity in humans. European Journal of Neuroscience, 31(4), 770–778. https://doi.org/10.1111/j.1460-9568.2010.07100.x
  26. Sherlin, L. H., Arns, M., Lubar, J., Heinrich, H., Kerson, C., Strehl, U., & Sterman, M. B. (2011). Neurofeedback and basic learning theory: implications for research and practice. Journal of Neurotherapy, 15(4), 292-304. 
  27. Tsai, M. H., Muir, A. M., Wang, W. J., Kang, Y. N., Yang, K. C., Chao, N. H., & Mefford, H. C. (2020). Pathogenic variants in CEP85L cause sporadic and familial posterior predominant lissencephaly. Neuron, 106(2), 237-245. 
  28. Vartanian, O., Navarrete, G., Chatterjee, A., Fich, L. B., Leder, H., Modroño, C., & Skov, M. (2013). Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture. Proceedings of the National Academy of Sciences, 110(supplement_2), 10446-10453. 
  29. Vartanian, O., Navarrete, G., Chatterjee, A., Fich, L. B., Leder, H., Modroño, C., & Skov, M. (2021). Architectural design and the brain: Effects of ceiling height and perceived enclosure on beauty judgments and approach-avoidance decisions. Cognitive Research: Principles and Implications, 6, 10. https://doi.org/10.1186/s41235-020-00243-1
  30. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30
  31. Vessel, E. A., Starr, G. G., & Rubin, N. (2012). The brain on art: intense aesthetic experience activates the default mode network. Frontiers in human neuroscience, 6, 66. 
  32. Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., & Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific data, 3(1), 1-9. 
  33. World Medical Association. (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. Jama, 310(20), 2191-2194. 
  34. Zeki, S. (2013). Clive Bell’s “Significant Form” and the neurobiology of aesthetics. Frontiers in human neuroscience, 7, 730. 
  35. Zeynali, M., Seyedarabi, H., & Afrouzian, R. (2023). Classification of EEG signals using Transformer based deep learning and ensemble models. Biomedical Signal Processing and Control, 86, 105130. 
  36. Zhou, R., Ji, B., Kong, Y., Qin, L., Ren, W., Guan, Y., & Ni, R. (2021). PET imaging of neuroinflammation in Alzheimer’s disease. Frontiers in immunology, 12, 739130. 
  37. Zommiti, M., Connil, N., Tahrioui, A., Groboillot, A., Barbey, C., Konto-Ghiorghi, Y., ... & Feuilloley, M. G. (2022). Organs-on-chips platforms are everywhere: a zoom on biomedical investigation. Bioengineering, 9(11), 646.