An Analysis of Heavy Metal Contamination in the Vicinity of Cassava processing mills in Aba, Abia State

Author's Information:

Okoye Rosemary

Department of Microbiology, Federal University Gusau, Zamfara State, Nigeria.

Amechi S. Nwankwegu

College of Life Sciences and Oceanography, Shenzhen University, China.

Vol 02 No 10 (2025):Volume 02 Issue 10 October 2025

Page No.: 174-184

Abstract:

Cassava (Manihot esculenta) is a staple crop for peasant farmers in Nigeria and other tropical African countries. Cassava milling engines release heavy metals from dewatering machines, grates, and lubricating grease, contributing to environmental pollution. These metals persist in the soil and accumulate in living organisms. This study analyzed heavy metal contamination near cassava processing mills in Aba, Abia State, Nigeria. Fifteen samples, including cassava wastewater, wastewater-contaminated soil, and pristine soil, were collected from five locations in Aba. Heavy metal presence was determined using Atomic Absorption Spectrophotometer (AAS). Metal concentrations in wastewater followed the order: Fe > Mn > Ni > Cu > Zn > As > Pb > Cd. In contaminated soil, the order was: Fe > Mn > Zn > Cu > Pb > As > Ni > Cd, while in pristine soil, it was: Fe > Zn > Mn > As > Ni > Pb > Cu > Cd. Iron levels were highest in all samples, with manganese, nickel, copper, zinc, arsenic, and lead at lower levels, and cadmium being the least. Heavy metal levels in contaminated soil were significantly higher than in pristine soil, indicating anthropogenic pollution. This accumulation is concerning due to its negative impact on the environment and human health.

KeyWords:

Aba, Abia State, Heavy metal, Manihot esculenta, Wastewater

References:

  1. Encyclopaedia-Britannica.https://www.britannica.com/editor/The-Editors-of-Encyclopaedia-Britannica/4419. Accessed 24th June, 2023.
  2. Kolwzan, B.W., Waldemar, A., Kazimierz, G. & Adam, P. (2006). Introduction to Environmental Microbiology. OficyynaWydawniczaPolitechnikiWroclawskiej, Wroclaw, ISBN: 83-7085-880-5.
  3. Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob. A., Rehim A. & Hussain S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171, 710–721. Doi.org/10.1016/j.chemosphere.2016.12.116
  4. Hazrat, A., Ezzat, K. & Ikram, I. (2019). Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, 14. Article ID 6730305.
  5. Saikat, M., Chakraborty, A., MontakimTareq, A., Emran, T. B., Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A. & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science, 34(3), 101865. Doi: 10.1016/j.jksus.2022.101865.
  6. He, Z.L., Yang, X.E. & Stoffella, P.J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140. Doi: 10.1016/j.jtemb.2005.02.010.
  7. Herawati, N., Suzuki, S., Hayashi, K., Rivai, I.F. & Koyoma, H. (2000). Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bulletin of Environmental Contamination and Toxicology, 64, 33–39. Doi: 10.1007/s001289910006
  8. Shallari, S., Schwartz, C., Hasko, A. & Morel, J.L. (1998). Heavy metals in soils and plants of serpentine and industrial sites of Albania. Science of the Total Environment, 19209, 133–142. Doi: 10.1016/s0048-9697(98)80104-6.
  9. Arruti, A., Fernández-Olmo, I. & Irabien, A. (2010). Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). Journal of Environmental Monitoring, 12(7), 1451–1458, 2010. Doi: 10.1039/b926740a.
  10. Sträter, E., Westbeld, A. & Klemm, O. (2010). Pollution in coastal fog at Alto Patache, Northern Chile. Environmental science and pollution research international, 17(9), 1563-73. Doi: 10.1007/s11356-010-0343-x.
  11. Pacyna, J.M. (1996). Monitoring and assessment of metal contaminants in the air. In: Chang LW, Magos L, Suzuli T, editors. Toxicology of Metals. Boca Raton, FL: CRC Press, 9–28. Doi: 10.1201/9781003418917-4.
  12. Oghenejoboh, K. M., Orugba, H. O., Oghenejoboh, E. A. & Samuel, U. M. (2021). Value added cassava waste management and environmental sustainability in Nigeria: A review. Environmental Challenges, 4, 100127.
  13. Adams, C., Murrieta, R., Siqueira, A., Neves, W., & Sanches, R. (2009). Bread of the Land: The Invisibility of Manioc in the Amazon. In: Adams, C., Murrieta, R., Neves, W., Harris, M. (eds) Amazon Peasant Societies in a Changing Environment Springer, Dordrecht, 281–305. Doi: 10.1007/978-1-4020-9283-1_13.
  14. Coker, A.O., Achi, C.G. & Sridhar, M.C.K. (2015). Utilization of cassava processing waste as a viable and sustainable strategy for meeting cassava processing energy needs: case study from Ibadan City, Nigeria. Environmental Challenges,  1(4), 628-639. Doi: 10.1007/978-981-10-5349-8_8.
  15. Otekunrin, I.A. & Sawicka, B. (2019). Cassava, a 21st century staple crop: how can Nigeria harness its enormous trade potentials? Acta Scientific Agriculture, 3(8), 194-202. Doi: 10.31080/asag.2019.03.0586.
  16. Oghenejoboh, K.M. (2015). Effects of cassava wastewater on the quality of receiving water body intended for fish farming. Current Journal of Applied Science and Technology, 6(2), 164-171. Doi: 10.9734/bjast/2015/14356. 
  17. Nweke, F.I. (1994). Cassava processing in sub-Saharan Africa: the implications for expanding cassava production. Outlook Agriculture, 23(3), 197-205. Doi: 10.1177/003072709402300307.
  18. Omotioma, M., Mbah, G.O., Akpan, I.J. & Ibezim, O.B. (2013). Impact assessment of cassava effluents on Barika Stream in Ibadan, Nigeria. International Journal of Environmental Science, Management and Engineering Research, 2(2),50-52. Doi: 10.17950/ijer/v4s10/1001.
  19. Omilani, O., Abass, A. & Okoruwa, V.O. (2015). Willingness to Pay for Value-Added Solid Waste Management System among Cassava Processors in Nigeria. Conference on International Research on Food Security, Natural Resource Management and Rural Development organized by the Humboldt-Universitätzu Berlin and the Leibniz Centre for Agricultural Landscape Research (ZALF), 16-18. Doi: 10.3390/su11061759.
  20. Adamu, C. S., Ekoja, O. F., Bello, S. G. & Salihu, B. S. (2021). Heavy Metals on Cassava Processing and the Environmental Effects in Central Nigeria. Advances in Earth and Environmental Science, 2(2), 1-6. Doi: 10.1088/1755-1315/692/3/032039.
  21. Oboh, G. (2005) Isolation and characterization of amylase from fermented cassava (Manihot esculenta Crantz) wastewater. African Journal of Biotechnology, 4(10), 1117-1123. Doi: 10.3923/pjn.2011.823.830.
  22. Aiyegoro, O.A., Akinpelu, D.A., Igbinosa, E.O. & Ogunmwonyi, H.I. (2007). Effect of cassava effluent on the microbial population dynamic and physiochemical characteristic on soil community. Science Focus, 12, 98-101. Doi: 10.1007/s10661-015-4651-y.
  23. Lemke, M.J., Brown, B.J. & Leff, L.G. (1997). The responses of three bacterial populations to pollution in a stream. Microbial Ecology, 34, 224-231. Doi: 10.1007/s002489900051.
  24. Cossica, E.S., Tavares, C.R.G. & Ravagnani, T.M.K. (2002). Biosorption of chromium (III) by Sargassum sp. Biomass. Electronic Journal of Biotechnology, 5(2), 134-140. Doi: 10.2225/vol5-issue2-fulltext-4.
  25. APHA. (1998). Standard Methods for the Examination of Water and Wastewater 20th Edition, American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC.
  26. Atulegwu, P.U. & Nnamdi, E. (2011). Quality assessment of the cassava-mill effluent polluted eutric-tropofluvent soil. Research Journal of Environmental Sciences, 5, 342-353. Doi: 10.3923/rjes.2011.342.353.
  27. Osakwe, S.A. & Akpoveta, V. O. (2012). Effect of cassava processing mill effluent on physical and chemical properties of soils in Abraka and Environs, Delta State, Nigeria. Chemistry of Material, 2(7), 27-31, 2012. Doi: 10.3184/095422912x13255245250543.
  28. Aluko, O.O. & Oluwande P.A. (2003). Characterization of leachates from a municipal solid waste land fill site in Ibadan, Nigeria. International Journal of Environmental Health Research, 2, 83-84. Doi: 10.7726/ijeps.2016.1001.
  29. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals, Interdisciplinary Toxicology, 7(2), 60. Doi: 10.2478/intox-2014-0009.
  30. Obueh, H.O.  & Odesiri-Eruteyan E. A. (2016).  Study on the effects of cassava processing wastes on the soil environment of a local cassava mill. Journal of Pollution Effects and Control, 4(4), 177-182. Doi: 10.4172/2375-4397.1000177.
  31. Oladele, P. K. (2014). Cassava Processing and the Environmental Effect. Conference proceedings paper, World Sustainability forum. Post-harvest Fabrication Engineering, International Institute of Tropical Agriculture Ibadan on 1 November 2014. Doi: 10.3390/wsf-4-a004.
  32. Sharma, A., Katnoria, J.K. & Nagpal, A.K. (2016). Heavy metals in vegetables: Screening health risks involved in cultivation along wastewater drain and irrigating with wastewater. Springer plus, 5(1), 1-16. Doi: 10.1186/s40064-016-2129-1.
  33. Ekeanyanwu, C.L., Alisi, C.S., Ekeanyanwu, R.C. (2020). Levels of Aflatoxin M1 and selected heavy metals (Pb, Cd, Cr, Cu, Zn, Fe, As, and Hg) in the breast milk of lactating mothers in South Eastern, Nigeria. Food Control, 112, 107150. Doi: 10.1016/j.foodcont.2020.107150.
  34. Rahman, Z. & Singh, V.P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr) (VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environmental Monitoring and Assessment, 191(7), 419. Doi: 10.1007/s10661-019-7528-7.
  35. Alloway, B.J. (2000).  Heavy metals in soils. Blackie and Son Publishers, Glasgow, 2nd Edition. 158, 2000. Doi: 10.1180/minmag.1991.055.379.24.
  36. Bernard, A. (2008). Cadmium and its adverse effects on human health. Indian Journal of Medical Research, 128(4), 557-64. Doi: 10.3390/biom14060650.
  37. Matschullat, J. (2000). Arsenic in the geosphere – a review. Science of the Total Environment, 249(1–3), 297–312. Doi: 10.1016/s0048-9697(99)00524-0.
  38. Gabriel, C., Ndinwa C., AnisltMirsm C.O., Chukumah M. M., Obarakpor K.I., Edafe E.A. & Morka W.E. (2014). Determination of heavy metals in tomato (solanum lycopersicum) leaves, fruits and soil samples collected from Asaba Metropolis, Southern Nigeria. Canadian Journal of Pure and applied sciences, 8(1), 2715-2720, 2014. Doi: 10.5539/ijc.v5n3p70.
  39. Martin, S. & Griswold, W. (2009). Human health effects of heavy metals. Environmental Science and Technology Briefs for Citizens, 15, 1–6. Doi: 10.5539/ijc.v5n3p70.
  40. Smith, A.H., Lingas, E.O. & Rahman, M. (2000). Contamination of drinking water by arsenic in Bangladesh: a public health emergency. Bull World Health Organization, 1(9), 1093–1103. Doi: 10.2471/blt.11.101253.
  41. Mazumder, G. (2008). Chronic arsenic toxicity and human health. Indian Journal of Medical Research, 12(4), 436–447. Doi: 10.1016/b978-0-12-418688-0.00006-x.
  42. Adrian, D.C. (2001). Trace elements in terrestrial environment (2nd edition) Springer-Verlay Company, New York. Doi: 10.1007/978-0-387-21510-5_19.
  43. Izah, S.C., Bassey, S.E. & Ohimain, E.I. (2018). Impacts of Cassava mill effluents in Nigeria. Journal of Plant and Animal Ecology, vol.1, no.1, pp. 14– 42, 2018. Doi: 10.14302/issn.2637-6075.jpae-17-1890.
  44. Agbo, B. E., Ogar, A. V., Itah, A. Y., Brooks, A. A & Akonjor, M. A. (2019). Assessment of the effects of cassava mill effluent on the soil and its microbiota in Biase local government area of Cross river state, Nigeria. World Journal of Advanced Research and Reviews, 01(02), 034–044. Doi: 10.30574/wjarr.2019.1.2.0012.
  45. Iqbal, Z., Abbas, F., Ibrahim, M., Qureshi, T.I., Gul, M. & Mahmood, A. (2020). Human health risk assessment of heavy metals in raw milk of buffalo feeding at wastewater-irrigated agricultural farms in Pakistan. Environmental Science Pollution Research, 27(23), 29567-29579. Doi: 10.1007/s11356-020-09256-4.
  46. Jianbo Y., Xin L., Xehui L., Minxi W. & Kwinyi L. (2020). Environmental Pollution Effect Analysis of Lead Compounds in China Based on Life Cycle. International Journal of Environmental Resource and Public Health, 9(2), 23-26, 2020. Doi: 10.3390/ijerph17072184.
  47. Khan S., Cao Q., Zheng Y.M., Huang Y.Z. & Zhu Y.G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152(3), 686-692. Doi: 10.1016/j.envpol.2007.06.056.
  48. Khan, K., Lu, Y., Khan, H., Zakir, S., Khan, S., Khan, L., Wei, A.A. & Wang, T. (2013). Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan. Journal of Environmental Science, 25, 10. Doi: 10.1016/s1001-0742(12)60275-7.
  49. Iwegbue, C.M.A., Bassey,, F.I., Tesi G.O., Nwajei ,G.E., Tsafe , A.I. (2013).  Assessment of Heavy Metal Contamination in Soils around Cassava Processing Mills in SubUrban Areas of Delta State, Nigerian. Journal of Basic and Applied Science, 21(2), 96-104. Doi: 10.4314/njbas.v21i2.2.
  50. Jarup, L. (2003).  Hazards of Heavy metals contamination. British Medical Bulletin, 68, 167-182. Doi: 10.4314/njbas.v21i2.2.
  51. Oladebeye, A. O. (2017). Assessment of Heavy Metals in Nigerian Vegetables and Soils in Owo and Edo Axes using X-Ray Fluorescence (Xrf) Technique. In Partial Fulfillment of the Requirements for the Award of Bachelor of Science Degree (B.Sc Honours) in Industrial Chemistry. Department of Chemical Sciences College of Natural and Applied Sciences Achievers University, Owo, Ondo State.
  52. Law, N. & Caudle, M. (2008). Pecoraro V. Manganese redox enzymes and model systems: Properties, structures and reactivity. International Journal of Chemistry, 46, 305-315. Doi: 10.1016/s0898-8838(08)60152-x.
  53. Emsley J. (2001). Manganese. Nature's building blocks: An A-Z Guide to the Elements. Oxford, UK: Oxford University Press, pp. 249–253.
  54. Encyclopedia Britannica. Soybean plant. www.britannica.com. Assessed, March 15th, 2023.
  55. Takeda, A. (2003). Manganese action in brain function. Brain Research Reviews, 4(1), 79.
  56. Mahfooz, Y., Yasar, A., Sohail, M.T., Tabinda, A.B., Rasheed, R., Irshad, S. & Yousaf, B. (2019). Investigating the drinking and surface water quality and associated health risks in a semi-arid multi-industrial metropolis (Faisalabad), Pakistan. Environmental Science and Pollution Research, 26, (20), 20853-20865. Doi: 10.1007/s11356-019-05367-9.
  57. Afzal, M., Shabir, G., Iqbal, S., Mustafa, T., Khan, Z.M. & Khalid, Q.M. (2014). Assessment of heavy metal contamination in soil and groundwater at leather industrial area of Kasur, Pakistan. CLEAN–Soil Air Water, 42(8), 1133-1139. Doi: 10.1002/clen.201100715.
  58. Iqbal, M.A., Chaudhary M.N., Zaib S., Imran M., Ali K. & Iqbal A. (2011). Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb) in agricultural soils and spring seasonal plants, irrigated by industrial waste water. International Journal of Environmental Technology and Management, 2, 3. Doi: 10.15373/2249555x/aug2013/4.
  59. Izah, S. C., Angaye, T. C. N. (2016). Heavy metal concentration in fishes from surface water in Nigeria: Potential sources of pollutants and mitigation measures. Sky Journal of Biochemistry Research, 5(4), 31-47. Doi: 10.3390/toxics5010001.
  60. Nematshah, C.N., Lahouti, M. & Gan, J. A. (2012). Accumulation of chromium and its effects on growth of (Alliucepa cv. Hybrid) European Journal of Experimental Biology, 2, 251-256. Doi: 10.1016/0168-9452(95)04230-r.
  61. Adelekan, B. & Sbegunde, K. (2011). Heavy metal contamination of soil and ground water at automobile mechanic village in Ibadan, Nigeria. International Journal of the physical Sciences, 6, 1045-105. Doi: 10.9734/jsrr/2022/v28i1030563.
  62. Shrivaster, R. (2011). Atmospheric heavy metal pollution. Resonance, 6(4), 62-68. Doi: 10.1007/bf02994594.