Variation of Soil Physicochemical Conditions and Teir Influence on Enteric Pathogen Load from Landfills in Zaria, Kaduna State

Author's Information:

Nyandjou Yomi Marie Carole

Department of Microbiology, Federal University Gusau, Zamfara State, Nigeria. 

ORCID No: 0009-0004-3948-1144

Okoye Rosemary

Department of Microbiology, Federal University Gusau, Zamfara State, Nigeria. 

ORCID No:  0000-0002-6090-6125

Vol 02 No 11 (2025):Volume 02 Issue 11 November 2025

Page No.: 185-193

Abstract:

Landfills represent complex ecosystems where varying physicochemical conditions significantly shape microbial dynamics, including the survival and proliferation of enteric pathogens. This study investigated the variation of soil physicochemical conditions and their influence on enteric pathogen load in landfill soils within Zaria, Kaduna State. Fifty-two (52) soil samples were collected in duplicate from each of these four locations, Tudun-Wada, Zaria city, Sabon-Gari and Samaru landfills in Zaria. Standard analytical procedures were employed to determine temperature and pH. The results showed that soil temperature ranged between 29.51°C and 34.13°C, while pH values varied from 7.16 to 8.27, indicating slightly alkaline conditions. Microbial analysis was conducted using serial dilution and selective culture techniques for the enumeration of enteric pathogens. The mean bacterial counts ranged from 2.1×10⁸ to 3.3×10⁸ cfu/g across sampling locations. Statistical analysis using Pearson Correlation revealed a strong positive correlation (r = 0.653) between temperature, pH, and bacterial counts, suggesting that variations in these parameters significantly influenced microbial proliferation. Principal Component Analysis (PCA) further showed that temperature accounted for 65.4% of the variation in microbial activity, whereas pH contributed 18.7%, emphasizing the dominant role of temperature in shaping microbial dynamics in landfill soils. Pathogenic bacteria identified included Salmonella enterica (6.92%), Vibrio cholerae non-O1 (1.35%), and Escherichia coli O157:H7 among other species. The findings highlight those physicochemical conditions, particularly in temperature and pH, strongly influence the survival and distribution of enteric pathogens in landfill environments, posing potential risks to public and environmental health.

KeyWords:

Soil physicochemical variation, Enteric pathogens, Landfill, Temperature, pH, Zaria

References:

  1. Odeyemi, A.T. (2012). Antibiogram status of bacterial isolates from air around dump site of Ekiti State Destitute Centre at Ilokun, Ado-Ekiti, Nigeria. Journal of Microbiology Research, 2(2), 12 -18.
  2. Arigbede, Y.A. & Yusuf, O.R. (2010). Waste disposal among underage children and the location of waste disposal infrastructure in Samaru, Zaria. A paper presented during the 50thAnnual Conference of the Association of Nigeria Geographers holding at the Kogi State University, Anyingba.
  3. Sa’idu, I. (2011). Refuse dumps threaten to take over Zaria. Category: Around and about. Weekly Trust No. 767.
  4. Stanley, A.M., Andrew, S.S., Dania, A.A. & Sani, I.F. (2012). An assessment of household solid waste disposal practices in Sabon-Gari, Zaria. ATBU Journal of Environmental Technology, 5(1), 48-59
  5. Zaria at a glance (2013). In: Uba, S., Zairu, A., Sallau, M. S., Abba, H. and Okunola, O. J. (2013). Metals bioavailability in the leachates from dumpsites in Zaria Metropolis, Nigeria. Journal of Toxicology andEnvironmental Health Sciences, 5(7), 131-141.
  6. Wachukwu, C.K., Mbata, C.A. & Nyenke, C.U. (2010). The health profile and impact assessment of waste scavenges (rag pickers) in Port Harcourt, Nigeria. Journal of Applied Science, 10(17), 1968-1972.
  7. Awisan, J.,Venchito, D.J., Angelica, B., Lizlotte, C. & Deanna, M.F. (2011). Aerobic pathogenic and opportunistic bacteria of public health significance in Ireland dumpsites soil. SLU Research Journal42(1), 27-37,
  8. Kalwasinska, A. & Burkowska, A. (2013). Municipal landfill sites as sources of microorganisms potentially pathogenic to humans. Environ. Sci.: Process. Impacts, 15(5), 1078-1086, 10.1039/c3em30728j
  9. Interim Management Committee (2011). The report of Sabon-Gari Local Government Area Committee on Environmental Sanitation.
  10. Ziraba, A.K., Haregu, T.N.& Mberu, B. (2016). A review and framework for understanding the potential impact of poor solid waste management on health in developing countries. Arch. Public Health, 74 (1), 55.
  11. Vinti, G., Bauza, V., Clasen, T., Medlicott, K.,Tudor, T., Zurbrügg, C. & Vaccari M. (2021). Municipal solid waste management and adverse health outcomes: a systematic review. Int. J. Environ. Res. Public Health, 18 (8), 4331, 10.3390/ijerph18084331
  12. World Health Organization. (2021). Expert Working Group: Recommendations for assessing morbidity associated with enteric pathogens. Vaccine, 39 (52), 7521-7525.
  13. Nyandjou, Y.M.C., Yakubu, S.E., Abdullahi, I.O. & Machido, D.A. (2018). Enteric Bacteria of Public Health Significance Isolated from Zaria Metropolis Dumpsite Soil. Science World Journal, 13(4), 30 -34.
  14. Fraczek,K.J., . Ropek, D.R. & Kozdrój, J. (2022). Spatial distribution of salmonella in soil near municipal waste landfill site. Agriculture, 12 (11), 1933. 10.3390/agriculture12111933
  15. Ncube, F., Ncube, E.J.  & Voyi, K. (2017). A systematic critical review of epidemiological studies on public health concerns of municipal solid waste handling. Perspect. Public Health, 137 (2), 102-108.
  16. Ginn, O. Lowry, S. & Brown, J. (2022). A systematic review of enteric pathogens and antibiotic resistance genes in outdoor urban aerosols Environ. Res., 212, Article 113097, 10.1016/j.envres.2022.113097
  17. Addy, R., Kalamdhad, A. & Goud, V.V. (2023). Insight on the prevalence of pathogens present in the municipal solid waste of sanitary landfills, dumpsites, and leachate. Fate Biol. Contam. Recycl. Org. Wastes, pp. 279-295,10.1016/B978-0-323-95998-8.00006-6
  18. Oshoma, C.E., Igbeta, B. & Omonigho, S.E. (2017). Analysis of microbiological and physiochemical properties of top soil from municipal dumpsites in Benin City. J. Appl. Sci. Environ. Manage., 21 (5), 985-990, 10.4314/jasem.v21i5.28
  19. Fraczek,K.J., . Ropek, D.R. & Lenart-Boron, A.M. (2014). Assessment of microbiological and chemical properties in a municipal landfill area. J. Environ. Sci. Health Part A: Toxic/Hazard. Subs. Environ. Eng., 49 (5), 593-599 10.1080/10934529.2014.859464
  20. Aziz, H.A., Yusoff, M.S. & Bashir, M.J.K. (2010). Leachate characterization in semi-aerobic and anaerobic sanitary landfills. A comparative study. Journal of Envnvironmental Managagement, 91, 2608-2614.
  21. Osunwoke, J.I. & Kuforiji, O.O. (2012). Health impact of microorganisms associated with waste dump sites in a private UniversityJournal of Sustainable Development and Environmental Protection, 2(1), 59.
  22. Zainol, N.A., Aziz, H.A. & Yusoff, M.S. (2012). Characterization of leachate from Kuala Sepetang and Kulim landfills. A comparative study. Energy and Environment Research2(2), 45-52.
  23. Adekanle, M.A., Oluremi, A.S. & Akindele, A.A. (2014). Bacteria isolated from waste dump         sites soil at Osogbo, Osun State. Journal of Microbiology and Biotechnology Research4(3), 66-69.
  24. Yeşiller, N., Hanson, J.L& Liu, W.L. (2005). Heat generation in municipal solid waste landfills. Journal of Geotechnical and Geoenvironmental Engineering, 131(11), 1330-1344
  25. Tognetti, C., Mazzarino, M.J. and Laos, F. (2007). Improving the quality of municipal organic waste compostBioresource Technology98, 1067-1076.
  26. Chua, P.L.C.  Ng, C.F.S. Tobias, A. , Seposo, .  X.T. &Hashizume, M. (2022). Associations between ambient temperature and enteric infections by pathogen: a systematic review and meta-analysis. Lancet Planet. Health, 6 (3), e202-e218, 10.1016/S2542-5196(22)00003-1
  27. Rmadass, K. & Palaniyandi, S. (2007). Effect of enriched municipal solid waste compost application on soil available macronutrients in the rice field. Archives of Agronomy and Soil Science,53(5), 497-506. Retrieved from http:/search ebscohost. com/login.aspx? direct=true &db=s8hAN=26419316 &site=ehost_liveon September, 2010
  28. World Health Organization (2011).  Solid waste management in emergencies. Fact sheet No.7
  29. Nyandjou, Y.M.C., Yakubu, S.E., Abdullahi, I.O. & Machido, D.A. (2019). Multidrug Resistance Patterns and Multiple Antibiotic Resistance Index of Salmonella species Isolated from Waste Dumps in Zaria Metropolis, Nigeria. Journal of Applied Science and Environmental Management, 23(1), 41–46. 
  30. Anand, U., Reddy, B., Singh, V.K., Singh, A.K., Kesari, K.K., Tripathi, P., Kumar, P., Tripathi, V. & Simal-Gandara, J. (2021). Potential environmental and human health risks caused by antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs) and emerging contaminants (ECs) from municipal solid waste (MSW) landfill. Antibiotics, 10(4), 374.  10.3390/antibiotics10040374
  31. Uba, S., Zairu, A., Sallau, M. S., Abba, H. & Okunola, O. J. (2013). Metals bioavailability in the leachates from dumpsites in Zaria Metropolis, Nigeria. Journal of Toxicology andEnvironmental Health Sciences, 5(7), 131-141.
  32. Isirima, M.O., Braide, S.A., Chindah, A.C., Nwachukwu, D., Ikoro, U.J., Osuamkpe, A. & gwe, C. (2005). Technical Reports: Institute of Pollution Studies Laboratory. Rivers State University of Science and Technology, Port Harcourt.
  33. Cheesbrough, M. (2006). District Laboratory Practice in Tropical Countries, Part 1, 2edCambridge, UK: Cambridge University Press. pp 97–115.
  34. Bach, P.D., Nakasaki, K., Shoda, M. and Kubota, H. (1987). Thermal balance in composting operations. Journal of Fermentation Technology, 65, 199-209.
  35. Tognetti, C., Mazzarino, M.J. and Laos, F. (2007). Improving the quality of municipal organic waste compost. Bioresource Technology, 98, 1067-1076.
  36. Obire, O., Nwaubeta, O. &   Adue, S.B.N. (2002).  Microbial community of a waste dump site. Journal of Applied Sciences and Environmental Management, 6(1), 78-83
  37. Pavoni, J.L., Heer, J.E., & Hagerty, D.L. (1975). Handbook of solid waste disposal, materials and energy recovery. Van Nostrand Reinhold Company, New York
  38. Atchley, S.H. & Clark, J.B(1979). Variability of temperature, pH, and moisture in an aerobic composting process. Applied Environmental Microbiology, 38, 1040-1044.
  39. Hagerty, D.J., Pavoni, J.L. & Heer, J.E. (1973). Solid waste management Van Nostrand Reinhold, New York.
  40. Oviasogie, F.E., Ajuzie, C.U. & Ighodaro, U.G. (2010). Bacterial analysis of soil from waste Dumpsite. Archives of Applied Science Research, 2(5), 161-167.
  41. Elaigwu, S.E., Ajibola, V.O. & Folaranmi, F.M. (2007). Studies on the impact of municipal waste dumps on surrounding soil and air quality of two cities in Northern Nigeria. Journal of Applied Sciences, 7(3), 421-425.
  42. Hassen, A., Belguith, K., Jedidi, N., Cherif, M. & Boudabous, A., (2002). Microbial characterization during composting of municipal solid waste. Proceedings of International Symposium on Environmental Pollution Control and Waste Management, pp. 357-368.
  43. Foday, P.S., Xiangbin, Y. & Quangyen, T. (2013). Environmental and health impact of solid waste disposal in developing cities: A case study of Granville Brook dumpsite, Freetown, Sierra Leone. Journal of Environmental Protection, 4, 665-670.
  44. Nwaokwe, T. (2004). National report of hazardous waste management in Nigeria. Proceedings of the based convention, Africa regional conference (BCARC' 04). Ibadan, Nigeria, pp 20-26.
  45. Grisey, E., Belle, E., Dat, J., Mudry, J. & Aleya, L. (2010). Survival of pathogenic and indicator organisms in ground water and landfill leachate through coupling bacterial enumeration with tracer tests. Desalinetia, 261, 162-168
  46. Arora, D.R. (2004). Textbook of microbiology.  2nd Eds. C.B.S Publishers and Distributors. p. 686.